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REVIEW ARTICLE 

Polarons and solitons 
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Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 

Received 20 March 1989 

Abstract. The idea of a polaron, a charge carrier in a solid, is reasonably familiar. The 
concept of the bipolaron is less so. A related excitation, the soliton, which may be charged 
or uncharged and is characterised by large non-linearity, has attracted increasing attention 
in recent years. Physical properties of these various excitations are discussed, with reference 
to specific examples. 

1. Introduction 

When a charge is injected into a solid the atoms in its neighbourhood are both elec- 
tronically polarised and displaced. When the charge moves under the influence of an 
electric field both the electronic polarisation and the displacement of the neighbours 
move with it, and the response to the electric field will be determined by an effective mass 
rather than by the bare band mass. The charge carrier with its associated polarisation and 
distortion field is referred to as a polaron and one can regard the polaron as a carrier 
with an effective mass mp*, different from the bare band mass m*. There are three 
principal mechanisms by which a free carrier interacts with a lattice: 

(i) Frohlich coupling, in which the carrier couples to the electric field produced by 
LO phonons; this occurs only in polar crystals such as KCl and GaAs and is the most 
powerful mechanism. 

(iii) Piezoelectric coupling, in which the carrier couples to the electric field produced 
by acoustic phonons in materials of appropriate symmetry such as ZnO and quartz. 

(iii) Deformation coupling, in which the carrier energy is affected by the strain 
produced by acoustic modes; this occurs in all crystals. 

The degree of localisation of carriers in perfect crystals is determined by a balance 
of opposing tendencies (Hayes and Stoneham 1985). Delocalisation is encouraged by a 
gain in energy equal to approximately half the band width whereas localisation is 
encouraged because of the gain in lattice relaxation energy associated with confinement 
of charge. Delocalised charges are referred to as large polarons and are typical of more 
covalent materials such as GaAs. Localised charges are referred to as small polarons 
and occur in more ionic solids such as KCl. In the case of the small polaron, motion is 
by hopping and the carrier may be immobilised at low temperatures, as in the case of 
the self-trapped hole in KCl (Hayes and Stoneham 1985). Occasionally there is near- 
equality of the localising and delocalising tendencies (Toyozawa 1961) and introduction 
of modest disorder can tip the balance to give charge localisation and a change from 
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high-mobility non-polaronic transport to low-mobility small-polaronic transport (Emin 
1983-see below). 

In magnetically disordered materials the spin of a carrier can polarise the magnetic 
moments of neighbouring magnetic ions and the moving charge is accompanied by a 
cloud of polarised spins. By analogy with the conventional lattice polarons mentioned 
above, this entity is called a magnetic polaron; if the charge is bound to an impurity or 
other lattice defect it is called a bound magnetic polaron (BMP). The concept of a 
BMP was first introduced to explain the metal-insulator transition occurring at the 
ferromagnetic transition temperature in Eu-rich EuC at T, = 50 K (Torrance et a1 1972). 
Here the onset of magnetic order is associated with donor delocalisation and an increase 
in electrical conductivity by a factor of about The localisation of the donor-state 
wavefunction in EuO above T, is not an example of Anderson localisation but is 
thermally induced stabilisation of a small-polaron state triggered by electron-magnon 
interaction. 

In recent years there has been considerable interest in the non-linear aspects of 
lattice excitations (see e.g. Trullinger eta1 1986), particularly of domain walls. Such non- 
linear excitations are referred to as kinks or solitons. The word ‘soliton’ refers to 
solitary waves corresponding to particular solutions of non-linear equations describing 
propagation of excitations in media that are dispersive and non-linear (Zabusky and 
Krustal 1956). Only one-dimensional systems can be described analytically and the 
solutions preserve shape and velocity after interactions. In a non-linear system the 
velocity depends not only on the frequency but also on the amplitude, and in some 
circumstances the effect of amplitude dependence can compensate for that of frequency 
dependence, resulting in a stable solitary wave; it is well known, for example, that it is 
possible to transmit soliton-like light pulses in an optical fibre. 

The high symmetry of the trans-polyacetylene (t-PA) chain with its conjugated double 
bonds makes this polymer an ideal system for the discussion of the soliton concept; 
perturbation of the conjugation propagates like a solitary wave in this system. A mobile 
conjugated defect associated with a dangling bond has in the past been referred to as a 
bond alternation defect, or kink, or domain wall, but is now more generally known in t- 
PA as a soliton (Kivelson 1986, Roth and Bleier 1987, Heeger et al 1988). In conducting 
polymers generally the charge carriers are analogous to the polarons mentioned earlier 
and the relationship between polarons and solitons is of interest. 

In § 2 we shall review ionic polarons and the interactions between them, giving rise 
to the possibility of bipolaron formation; the significance of bipolarons for super- 
conductivity is briefly discused. In § 3 we discuss magnetic polarons, with some emphasis 
on mixed magnetic semiconductors. The phenomenon of Jahn-Teller polarons is briefly 
dealt with in § 4, with some reference to solitons and superconductivity. Finally, in § 5 
we discuss solitons and polarons in conducting polymers and again we consider bipolaron 
formation. 

2. Polarons and bipolarons in ionic solids 

2.1. Large polarons and smallpolarons 

The simplest model of an electron interacting with a lattice involves a single harmonic 
oscillator of frequency o, representing a normal mode of the lattice, to which a force F 
representing the effect of the electron is applied (see e.g. Hayes and Stoneham 1985, p 
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Figure 1. Illustration of the terms involved in pro- 
ducing the relaxation energy ER when a force F i s  
exerted on a classical harmonic oscillator. 

31). Treating the oscillator classically for the moment and representing its configuration 
by the coordinate Q ,  the energy is 

E = $M[(dQ/dt)* + u*Q*]  - FQ. 
Making the substitution 

Q‘ = Q - F/ (Mo*)  

we find 

E = iM[(dQ’/dt)* + u*Q’*] - F 2 / ( 2 M 0 2 ) .  
This describes a harmonic oscillator with the original frequency U but with its equilibrium 
coordinate shifted by F / ( M u * )  relative to its value when F = 0 and with its ground-state 
energy lowered by the relaxation energy 

ER = - F 2 / ( 2 M ~ * ) .  (4) 
This behaviour is illustrated schematically in figure 1. For the moment we shall 

assume that the mass M associated with the oscillator is large and the frequency U rather 
small; the lattice cannot therefore follow the instantaneous motion of the electron and 
responds only to the probability that the electron is in a particular place. This limit is 
known as the adiabaticlimit. Since the lattice iseffectively frozen into position, its kinetic 
energy vanishes and to find the configuration of minimum energy we only have to 
minimise the relaxation energy ER. (The opposite limit, known as the anti-adiabatic or 
quasi-adiabatic limit, occurs when the frequency o is very large and the lattice modes 
can follow the instantaneous motion of the electron. The lattice is sometimes said, rather 
confusingly, to follow the electron motion adiabatically in this case.) 

In the adiabatic limit, we now ask what kind of electron wavefunction will minimise 
the total energy of the coupled electron-lattice system and, in particular, what will be 
the degree of localisation of the electron described by this wavefunction (Emin and 
Holstein 1976)? To answer this question we must stipulate the physics that gives rise to 
the force F. In particular we shall be interested in short-range electron-lattice coupling, 
where the electron exerts a force on only the adjacent atom, and the Coulomb interaction 
with the deformation-induced polarisation of the lattice. If we compress or expand the 
whole system by a scale factor L the electron wavefunction follows the scaling law 

v, cc L-42 ( 5 )  
in d dimensions because it must remain normalised. Therefore, for short-range coupling, 
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the force F is just proportional to the probability that the electron will be found at that 
site: 

F a  [VI2 a L-d .  (6) 
For a Coulomb interaction the force on a given atom due to the electron being situated 
at some other site scales as 

F a  L-*(VI2 a (7) 
Integrating equation (4) for the relaxation energy over all lattice modes and (for the 
Coulomb case) over all positions of the electron and the atom, we find that for a short- 
range interaction the total relaxation energy scales as 

(8) Eshortrange L-d 
R 

and for a Coulomb interaction as 
ECoulomb L -4+d  

R (9) 
If both short-range and Coulomb interactions are present there is an additional cross 
term 

(10) E C K O S S  R cc L - 2 .  

Depending on which of these interactions are present and on their relative mag- 
nitudes, a variety of different behaviours of the total energy E as a function of scale 
length L may be obtained. If there is no electron-lattice coupling we have only the 
kinetic energy of the electron, which is positive (in contrast to the relaxation energy) 
and scales as L-2. It therefore decreases monotonically as L-+ and the familiar 
extended Bloch state is formed. 

For a three-dimensional system in which only the Coulomb interaction with the 
lattice is present, or for a one-dimensional system in which there is only a short-range 
interaction (such as the SSH model of conjugated polymers discussed in § 5 )  the positive 
kinetic energy always dominates for small L and prevents the system collapsing to small 
length scales. The only stable length scale is at some finite L;  this corresponds to a farge- 
polaron state where the electron wavepacket extends over some finite length L. 

If however we have a three-dimensional system with only a short-range interaction, 
or a one-dimensional system with only a Coulomb interaction, the relaxation energy E R  
scales as L-3 and overwhelms the kinetic energy penalty at small L ,  causing the electron 
wavepacket to shrink until it becomes localised around a single lattice site and our 
continuum scaling arguments break down. This situation, where the electron is trapped 
at a single lattice site by the lattice distortion it causes, and the potential well is deep 
enough to produce a bound state, was first envisaged by Landau (1932), who also realised 
that in the absence of other effects it is separated from the (now metastable) delocalised 
Bloch state by an energy barrier. The electron is now said to form a small-polaron state. 

If both the long-range Coulomb and the short-range electron-lattice interactions are 
present, different effects can be produced. A minimum in the energy, corresponding to 
a metastable large polaron, can appear at finite L ,  or alternatively the energy barrier 
between the Bloch state and the small-polaron state can be removed. 

2.2. The polaron effective mass and transport properties 

In reality we cannot neglect the kinetic energy (and hence the inertial effects) associated 
with the normal modes of a crystal lattice and they must be described as quantum, not 
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classical, oscillators. We shall review briefly some of the consequences for the theory of 
large polarons, and then pass on to consider small polarons. 

We shall consider first the so-called Frohlich interaction (see § 1) between an electron 
and the polarisation induced by the displacement of a longitudinal optic (LO) phonon 
mode. The interaction with the polarisation field at a distance r from the electron takes 
the form (in SI units) 

where E is the zero-frequency dielectric constant, which includes both electronic and 
ionic screening, E, is the dielectric constant at a frequency high compared with phonon 
frequencies but low compared with inter-band transition energies (which therefore 
includes only electronic screening) and is the permittivity of the vacuum. It is cus- 
tomary to assume that the LO modes are dispersionless, with common frequency oLo, 
and to define the dimensionless coupling constant 

The quantity rp is the polaron radius 

where m* is the bare band mass of the electron (i.e. the effective mass neglecting polaron 
effects). It is thus the de Broglie wavelength of an electron with the LO phonon energy, 
and (Y is half the ratio of the polarisation interaction at this radius to the LO phonon 
energy. With these definitions and assumptions, the Frohlich Hamiltonian for the 
coupled electron-lattice system is 

where ck annihilates an electron of Bloch wavevector k, Ek = h2k2/2m*, Vq = 
i ( 4 ~ ( ~ / V ) ~ ~ ~ ( h / 2 m o ~ ~ ) ' ~ ~ ( h ~ ~ ~ / ~ )  where V is the sample volume and b, annihilates a 
phonon of wavevector q. If the coupling is small, its properties are most conveniently 
studied by perturbation theory in the parameter CY; this shows that the polaron effective 
mass rn; is given by 

mp* = m*[1 + ( ~ / 6  + O(CY~)]  (15a) 
and that the expectation value of the number of phonons accompanying the electron is 
a/2 (see Kittel 1963 p 137). For a perfect two-dimensional system, in contrast to the 
three-dimensional systems discussed above, Das Sarma (1983) found that 

mp* = m*[1 + na/8 + O(CY*)] (15b) 
so that reduction in dimensionality from 3~ to 2D leads to a nearly three-fold increase in 
the predicted polaron mass enhancement. We might expect to find such behaviour in 
systems where the effective size in one direction is less than the polaron radius; however, 
there is as yet no convincing evidence from experimental work on heterostructures that 
this enhancement actually occurs (Nicholas et a1 1988). Note that continued reduction 
in the dimensionality from two to one leads to the prediction of small-polaron formation 
from Frohlich coupling (see above). 
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Unfortunately for many of the ionic crystals of interest (e.g. the alkali halides), we 
have a 3 1 and perturbation theory is inapplicable. Feynman (1955) showed how this 
difficulty may be circumvented using a path integral treatment similar to the one he 
introduced in quantum electrodynamics. He used an approximate form for the electron- 
phonon coupling and integrated out the phonon modes to leave an effective action 
function for the electron; he was then able to derive a variational principle and thus to 
deduce an upper bound to the energy of the coupled electron-lattice system. The 
dependence of this energy on the electron velocity yields an expression for the polaron 
effective mass that agrees with (15a) for small a. For a review of more recent devel- 
opments in this field, see Peeters and Devreese (1984). 

We now consider the case of the small polaron, for which a review of the theoretical 
position has recently been given by Stoneham (1989). It is easiest to start from a tight- 
binding model of the electronic structure and to include only the ‘on-site’ electron- 
phonon coupling (Holstein 1959, Lang and Firsov 1963). In other words, we consider 
only the dependence on the atomic positions of the matrix elements of the electronic 
Hamiltonian that are diagonalin the Wannier representation. This automatically ensures 
that transitions in which an electron hops from one site to another obey the Condon 
approximation, i.e. the electronic transition matrix elements do not depend on the 
phonon coordinates. 

The quantum-mechanical analogue of the transformation (2) from Q to Q‘ that took 
us from (1) to (3) is a canonical transformation that eliminates the electron-phonon 
coupling. The Hamiltonian is rewritten in terms of dressed electron and phonon oper- 
ators; each phonon mode has its equilibrium shifted by an amount that depends on 
the position of the electrons, and the creation of an electron on a particular site is 
accompanied by its associated lattice distortion. The new transformed Hamiltonian has 
three features not found in the original. First, there is a uniform shift downwards in 
energy because of the relaxation of the phonons. Secondly, a phonon-mediated attrac- 
tion between the dressed electrons is introduced, discussion of which we shall defer until 
$2.3.  Thirdly, the hopping amplitude for the dressed electrons between lattice sites is 
no longer a simple number but involves redistribution of the lattice distortion and is 
therefore a function of the phonon operators. Equivalently we can say that this hopping 
amplitude is a function of the vibrational quantum numbers of the lattice modes before 
and after the transition, since it involves the overlap of the vibrational wavefunctions in 
the initial and final electronic states. 

The Huang-Rhys factor So, (Huang and Rhys 1950, Pekar 1950) for the phonon 
mode a at zero temperature is defined as the ratio of the change in relaxation energy 
AERn for that mode during the hopping process to the phonon energy hw,: 

So, = AERa/hw,. (16) 

The overlap between the ground states of all the phonon oscillators before and after 
the electronic transition is just exp(-E,So,). At finite temperatures we define 

S ,  = So, coth(hw,/2kT). (17) 

The sum of the overlaps between phonon states with the same quantum numbers n,, 
weighted by the probabilities of these quantum numbers occurring at temperature T ,  is 
then exp( -&S,). Note that it is a strongly decreasing function of temperature, because 
for a given mode the overlaps become smaller with increasing n,, and with increasing 
temperature the mean value of n, rises. Hence the amplitude for the hopping of an 
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electron between sites without change in the phonon occupation numbers, i.e. without 
absorption or emission of phonons, also decreases strongly with increasing temperature. 

Let us consider the consequences of this result. The combined electron-lattice system 
has translational symmetry, so the Bloch wavevector is a good quantum number. At 
very low temperatures, however strong the electron-phonon coupling, the eigenstates 
of the system are extended states with definite wavevectors that are linear combinations 
of ‘small-polaron’ states where the electron and its associated lattice distortion are 
localised at a given site. The result is the formation of a ‘polaron band’ whose width is 
proportional to the hopping amplitude discussed above. However, as the temperature 
rises two things happen: the polaron band width decreases sharply (and therefore the 
polaron effective mass increases sharply), and the probability of scattering processes 
involving the emission and absorption of phonons increases. If an electron is prepared 
in a localised small-polaron state at a certain lattice site, it is very likely to be scattered 
by one of these inelastic phonon processes before its wavepacket has been significantly 
broadened. It is therefore most useful to consider transport processes above a certain 
critical temperature in terms of the thermally assisted hopping of such small-polaron 
states. While such a cross-over from coherent to diffusive motion has not been observed 
in electron transport, it has recently been reported in the diffusion of muonium in KCI 
measured by muon spin relaxation (Kiefl et a1 1989). In the muon case, the cross-over 
occurs at about 70 K. 

The consequences for the electrical conductivity as a function of temperature and of 
frequency are discussed by Holstein (1959), Lang and Firsov (1963), Reik (1972) and 
Mott (1987a). At  high temperatures the conductivity has a simple activated form 

CJ = o0 exp(-E,/kT) (18) 
where E, is the activation energy for the small-polaron hopping process. This type of 
dependence has been observed in a number of transition-metal oxides and over a wide 
temperature range in orthorhombic sulphur (Spear 1974) as well as in solid N2, O2 and 
CO (Loveland et a1 1972). At lower temperatures there is no experimental evidence for 
polaron band transport, but this is not surprising because particles with such large 
effective masses and such narrow bands would be very readily localised by trapping at 
impurity sites. There is indirect evidence, however, of a transition from activated 
transport to some other mechanism in the dramatic reduction of the activation energy 
for conduction in Li-doped NiO at low temperatures (Bosman and van Daall970, Mott 
1987a). We note the recent evidence suggesting that the holes in this type of doped oxide 
reside primarily in oxygen p states and not, as is sometimes supposed, on the metal ions 
(Kuiper et a1 1989). 

It is possible to discuss the frequency dependence of the conductivity on the basis of 
a very simple model, the Polder model. Figure 2 shows a configuration coordinate 
diagram for the lattice modes when the small polaron is situated on two neighbouring 
sites. The most important contribution to the conductivity at frequency o comes from 
Franck-Condon hopping processes where the phonon modes do not change during 
the electronic transition but are left to readjust afterwards. If the effective mass and 
frequency of the lattice mode are M and oo respectively, and its configuration is again 
represented by the single coordinate Q ,  then the potential energy curves for the lattice 
with the electron on the two different sites are 

VI <Q> = (Mm8/2) ( Q  - Qo12 
Vz(Q) = (Mo?1/2) (Q + eo)* 

(19a) 

(19b) 
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Figure 2. Configuration coordinate diagram for 
a small polaron hopping between two sites in a 
lattice. The curves with minima at -Qo and Qo 
describe the energy of the lattice with the charge 
localised at positions 1 and 2 respectively. The 
arrow shows a Franck-Condon transition of 
energy hw as discussed in the text. 

Site 2 

Q - QO 

where 5 Q ,  are the minimum potential energy configurations for the lattice when the 
electron occupies the different sites. The energy hw of the Franck-Condon transition is 
related to the value of Q for which it occurs by 

hw = 2Mw20QQ0. (20) 
The most important factor in determining the net rate of this process is the difference in 
the equilibrium occupancies of the states separated by the arrow in figure 2;  thus 

where E,  = V,(0) = V2(0) (see figure 2).  
The important frequency dependence of this result is reproduced by a more math- 

ematically rigorous derivation using the Kubo formula (Kubo 1957). It gives a charac- 
teristic peak in the frequency-dependent part of the conductivity at w = 4E, (see figure 
3). Qualitatively similar frequency dependence is observed in a number of transition- 
metal oxides and other materials (Bosman and van Daall970, Reik 1972) and has been 
interpreted in terms of polaronic effects, although there are other possibilities. Note the 
similarity of this type of hopDing to the charge-transfer optical transitions observed at 
defect sites like the V- cenrre (hole trapped at a cation vacancy) in MgO and other 
oxides (Hayes and Stoneham 1985). 

We conclude our consideration of small-polaron conduction by discussing the Hall 
effect in a solid where the conduction is by polaron hopping. The usual arguments for 
the magnitude and sign of the Hall coefficient do not apply in this case and indeed it is 
not obvious whether there should be a Hall effect at all. However, it can be shown 
(Friedman and Holstein 1963)) that in a magnetic field the different possible hopping 
paths between two sites will interfere to produce a Hall mobility that is always n-type, 
regardless of the sign of the carriers, if the orbitals concerned are s states. For p states 
the Hall coefficient can be positive for electrons and negative for holes, and it has been 
suggested that this explains the anomalous sign of the Hall coefficient in amorphous 
silicon and other materials (Emin 1977a, b). 

2.3. Interactions between polarons; bipolaron formation 

So far we have not considered how polarons interact with each other. There will be two 
types of interaction present. First, there will be a Coulomb repulsion between the 
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Ionic 'Anderson' singlet '! * E = Ueff 

4 

-.__ I_------___ ,.-- ,.'j **-. Bonding singlet 
I .  ''s,~ E = V e f f - 2 J  

Figure 3. Sketch of the frequency dependence of 
the conductivity given by equation (21). 

Figure4. States of a model two-site, two-electron 
system where the electrons are coupled to the 
inter-atomic coordinate. Symbols are as defined 
in the text. 

electrons. This may be screened out at large distances but in many oxides it is large when 
two electrons occupy the same site in the lattice. In a half-filled band, the consequences 
for the transport properties can be dramatic. If the repulsion rises beyond a certain 
critical multiple of the band width there is a transition to an insulating state where each 
site is occupied by only one electron and no current flows; there is a gap in the excitation 
spectrum, equal to the magnitude of the on-site repulsion, before an excited state can 
be produced which involves double occupancy of some lattice sites (Mott 1949, Hubbard 
1964). 

In addition, there may be an attractive interaction between electrons that arises 
because it is advantageous for them to share the same accompanying cloud of lattice 
distortion. We can see how this arises from the simple example described in Q 2.1. 
Suppose we have two separate lattice oscillators, both of effective mass M and frequency 
CO, and each experiences a force from only one of two electrons; we denote the two forces 
by F1,  F2. This might correspond to a situation with short-range electron-lattice coupling 
where the electrons are widely separated. Then the total gain in relaxation energy of the 
lattice modes is 

ER = - (F;  + Fi ) /2Mm2.  (22) 
If, however, we arrange the electrons so that they are coupled to the same mode (if the 
coupling is short-range this will involve bringing them together in real space), then the 
relaxation energy is 

In other words, we gain relaxation energy whenever we couple two electrons to the same 
lattice mode with forces F1,  F2 of the same sign, and this results in an attractive force 
between them. The Coulomb repulsion between two carriers on the same site in the 
crystal is often denoted by U;  the interaction with the lattice renormalises this to an 
effective value Ueff. If the attractive interaction mediated by the lattice is large enough 
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the net interaction may be attractive. U,,, will then be negative and this behaviour is 
therefore referred to as negative-U behaviour. In the case of the Jahn-Teller polarons 
discussed in P 4, the directional dependence of the attractive force can be quite com- 
plicated (Stoneham and Bullough 1971). 

Negative- U behaviour is postulated to occur in chalcogenide glasses (Anderson 1975, 
Street and Mott 1975). It is supposed that a single electron in a dangling bond left 
unsaturated in the random network structure has a net attraction for a second electron. 
A pair of singly occupied dangling bonds is thus assumed to be unstable with respect to 
disproportionation into an unoccupied and a doubly occupied state. The strong electron- 
phonon coupling in this case results from the strong occupancy-dependent interaction 
of the dangling bond with lone pairs of valence electrons on nearby atoms. The dangling- 
bond state is then described as a negative-U state. 

This model explains the absence of the Pauli paramagnetic susceptibility charac- 
teristic of unpaired electron spins as well as characteristics of the absorption spectrum; 
the unoccupied dangling bond is predicted to be an acceptor and the doubly occupied 
state a donor, both with rather small binding energies. The absorption spectrum there- 
fore shows a tail below the band edge and no features in mid-gap (Street et a1 1975). 
Further strong experimental support for this idea comes from the results of measure- 
ments of the transient photoconductivity of a-As2Se3 as a function of temperature (Thio 
et a1 1984). In the liquid state above the 'glass temperature', doubly occupied and 
unoccupied dangling bonds are created thermally in pairs, requiring an energy Epair. An 
additional energy equal to the modulus of the effective electron-electron attraction 
U,, must then be supplied to produce two singly occupied states, which can act as 
recombination centres. The total activation energy for the recombination rate is thus 
(Epair + I Ueffl)/2. Below the glass temperature, however, a fixed concentration of dan- 
gling bonds is frozen into the structure and the activation energy drops to I Ueff1/2. The 
low-temperature activated behaviour of the decay rate of the transient photo- 
conductivity of a-As2Se3 therefore provides a direct measure of I U,,,/, which is found to 
be about 0.7 eV. 

Recently several theoretical investigations of the negat ive4 concept have been 
reported. Baraff et a1 (1979,1980) and Lannoo et a1 (1981) have calculated the relative 
energies of the Vo and V+ charge states of the silicon vacancy and find that the doubly 
occupied Vo is more stable than the singly occupied V', while Stoneham and Sangster 
(1983) have investigated the relative charge-state stabilities for transition-metal ions in 
ionic materials. Total energy pseudopotential calculations have also been carried out 
with full atomic relaxation for the Se anti-site defect in c-As2Se3 (such calculations 
involving the complex range of geometries involved in the amorphous material are still 
not feasible) and showed that a pair of neutral anti-site defects of this type would be 
unstable with respect to a positively and a negatively charged defect (Tarnow et a1 1988). 
The calculated energy release on disproportionation was 0.28 * 0.08 eV per pair. 

The overall net attraction of a pair of electrons can have consequences in the bulk as 
well as at defect sites. To see the kind of states that may form, it is instructive to consider 
a model two-site system where the electrons are coupled to the single inter-atomic 
displacement coordinate (Chakraverty et a1 1978, Toyozawa 1981). Both the on-site and 
inter-site Coulomb repulsions of the electrons are reduced from their bare values U and 
V by the interaction with the lattice to effective values U,, and Veff, and either or both 
may become negative (attractive). Under the plausible assumption that V,, is more 
negative than U,,,, the electronic ground state in the limit where we can neglect the 
lattice kinetic energy is a singlet bonding state with even symmetry under inversion and 
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energy V,, - Wrelative to two isolated polarons. As the energy rises we have (see figure 
4 )  successively an even triplet state of energy Veff, an odd singlet state of the type 
originally suggested by Anderson (1975), which is purely ionic and therefore has energy 
Ueff, and an anti-bonding singlet state with energy Ueff + W. HereJis  an effective inter- 
atomic exchange integral 

21 = 4&/(Ueff - Ved (24)  
where teff is the effective inter-site tunnelling integral, reduced from its bare value by the 
reduction factor exp(-S), S being the Huang-Rhys factor of equation (17). Note how 
J acts as an antiferromagnetic exchange integral, stabilising the singlet ground state 
relative to the triplet; it has been conjectured (de Jongh 1988a, b) that this additional 
magnetic stability is important in certain circumstances for polaron pairing (but see 3 3). 

In a bulk solid, the expected behaviour of the system will depend on the ratio of the 
binding energy of the lowest two-electron state relative to two isolated polarons, denoted 
A ,  to the polaron band width W = 2zteff, where z is the number of nearest neighbours 
in the lattice. If A + W then the polarons interact weakly with each other, whereas if 
A * W we expect the polarons to form pairs that are more or less permanent. These 
stable bound pairs are known as bipolarons. There is some evidence that such a species 
is responsible for the activated transport observed in the diamagnetic phase of Ti@, 
between 130 and 150K (Lakkis et a1 1976, Schlenker and Marezio 1980), and for 
anomalies in the heat capacity of vanadium bronzes (Chakraverty et a1 1978). These 
ideas have also been used in the interpretation of the absorption spectrum of LiNbOs 
(Koppitz el a1 1987) and of the conductivity of WO3 (Gehlig and Salje 1983, Schirmer 
and Scheffler 1982; see Stoneham 1989 for additional references). 

2.4.  Superconductivity 

Bipolarons are similar to the Cooper pairs that occur in the BCS theory of super- 
conductivity in that they are pairs of electrons bound together by their interaction with 
the lattice. They differ in that, whereas a Cooper pair consists of two electrons with 
opposite wavevectors (k-space pairing), a bipolaron consists of two electrons on adjacent 
lattice sites or even on the same lattice site (real-space pairing). These differences are a 
consequence of the different assumptions made when deriving their properties, in 
particular about the form of the force F exerted on the lattice by the electron and about 
the ratio of the phonon frequencies to the other energy scales in the problem. 

In BCS superconductivity, the interaction with the lattice arises from the deformation 
potential, which expresses the dependence of the electron energy on the sample volume 
(see 0 1). For a wide quasi-free-electron band the effect is to produce a shift in the energy 
that is almost independent of wavevector but only within energies of the order of the 
Debye frequency. For electrons whose energies differ by more than this, the lattice 
cannot respond quickly enough to follow their relative motion and therefore makes no 
contribution to their interaction. In bipolaron theories, on the other hand, it is usually 
assumed that the so-called anti-adiabatic limit applies, where the phonon frequencies 
are large compared with the electron band width and the lattice can therefore follow the 
electron motion essentially instantaneously. Therefore all the electron states in the band 
can be coupled by the interaction. 

Despite these differences, it is possible to construct theories of superconductivity 
involving polarons and bipolarons. Following Alexandrov et a1 (1986b) we distinguish 
two cases. If the electron-phonon coupling is not too large, the binding energy A of 
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bipolarons, as discussed above, is small compared with the band width (Alexandrov 
1983). The interaction between polarons can then be treated just like the electron- 
electron interaction in conventional BCS theory. There are two important differences: 
first, we assume we are in the anti-adiabatic limit so all the states interact and contribute 
to the superconductivity, not just those close to the Fermi energy; secondly, it is likely 
that the important attractive interactions are the inter-site ones (like V,, in the example 
in § 2.3), so the fourier transform of the interaction into k-space has a k-dependence 
that we cannot ignore. These differences lead to small differences in the formula for the 
critical temperature from that in BCS theory; basically, the Debye energy is replaced by 
the polaron band width wherever it appears, and some extra terms arise. The polarons 
are now bound in pairs with opposite k-vectors, just as in BCS theory; the transition 
temperature is a strongly increasing function of the attractive interaction between them 
and hence of the strength of the electron-phonon coupling. Alexandrov (1983) refers 
to this type of superconductivity as polaronic. 

If, however, the bipolaron binding energy A is large compared with the band width 
(Alexandrov and Ranninger 1981), the bipolarons behave as stable entities, similar to 
bosons except for a restriction that they may not occupy the same lattice site. They may 
therefore be regarded as a lattice gas of bosons interacting with a hard-core repulsion 
(Alexandrov et a1 1986a), and show a Bose condensation into a superfluid state at low 
temperature. The real-space pairing of the electrons means that the coherence length is 
much smaller than for BCS superconductivity. The effective mass of the bipolarons 
increases with electron-phonon coupling and therefore the transition temperature 
decreuses with increasing coupling strength. Furthermore the spectrum of the superfluid 
state appears at first sight to be gapless. However, a closer study of the system (Nasu 
1987) reveals that the gap decreases exponentially with the electron-phonon coupling 
in the anti-adiabatic limit. Studied in the random-phase approximation, the collective 
excitation mode of the bipolaron condensate goes over smoothly to the pair-breaking 
excitation of the Bcs-like state as the bipolaron binding is reduced. In addition, an 
insulating charge-density-wave state is possible in which the lattice distorts to open up 
an energy gap at the Fermi energy (Chakraverty 1981); this state competes with the 
superconducting one and is favoured for strong electron-phonon coupling away from 
the anti-adiabatic limit. 

Following the discovery of the high-temperature superconducting oxides (Bednorz 
and Muller 1986, Chu et a1 1987), a number of authors have suggested that a bipolaronic 
mechanism could be responsible for their high transition temperatures and novel proper- 
ties (de Jongh 1988a, b, PrelovSek et a1 1987, Mott 1987b, Ray 1987, Alexandrov et a1 
1987, Alexandrov 1988, Stoneham 1987, Catlow et a1 1988). We shall not attempt to 
discuss here the relative merits of these pictures, but point out a few of their strengths 
and weaknesses. All have some difficulty in relating the superconducting and magnetic 
parts of the phase diagram of the materials, but all predict (correctly) that super- 
conductivity at moderately high temperatures should be possible in materials where 
antiferromagnetic order is absent. Some theories predict that the maximum critical 
temperature will occur at the transition between the polaronic and bipolaronic regimes, 
where the bipolaron binding energy and the polaron band width are of the same mag- 
nitude and neither can be treated as small. This leads to grave difficulties in extracting 
concrete quantitative predictions from the theory. There are also problems with the 
apparent observation of a superconducting energy gap in the high-Tc materials. One 
notable success of these theories is the derivation of an upward curve in the critical 
magnetic field as a function of temperature in the superconducting state (Alexandrov et 
a1 1987). 
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3. Magnetic polarons 

In semiconductors containing magnetic ions there is a large exchange interaction 
between carrier spins and the spins of the magnetic ions, which gives rise to ferromagnetic 
alignment of the moments of the magnetic ions surrounding the carrier spin. This 
combination of carrier and magnetic polarisation cloud is referred to as a magnetic 
polaron. Free magnetic polarons have not yet been firmly identified. However, carriers 
localised by defects (donors, acceptors) can induce sizable ferromagnetic moments 
centred on the defect site; these bound magnetic polarons (BMP) can have ferromagnetic 
moments as large as about 25 pB. 

It is well known that EuO undergoes a metal-insulator transition at T, = 50 K 
associated with a transition from ferromagnetic order to magnetic disorder (Torrance et 
a1 1972). Below 50 K conduction in EuO is metallic owing to the presence of ionised 
donors (oxygen vacancies). Above 50 K collapse of the donor wavefunction occurs, 
giving an insulator. Below 50K the uniform magnetisation does not contribute to 
localisation but the localisation energy associated with the onset of magnetic disorder 
triggers collapse of the donor wavefunction at T, with loss of conductivity (Emin et al 
1987). Application of a magnetic field to the disordered magnetic state reduces the 
tendency of a carrier to form localised polarons and increases conductivity. 

In dilute magnetic semiconductors (DMS) containing magnetic ions, such as 
Cdl -,Mn,Te, the magnetic interaction between nearest-neighbour Mn2+ ions is anti- 
ferromagnetic in sign. For x < 0.7 this material has the zincblende structure with Mn2+ 
replacing Cd2+ randomly. The magnetic spins are distributed in clusters of various sizes. 
Forx = 0.05, for example, the probabilities of singles, pairs (spinless), open triples and 
closed triples are 0.54, 0.24,0.09 and 0.02 respectively, accounting for 89% of Mn2+; 
the rest is in larger clusters. The ground state of Mn2+ is3ds %512 and exchange interaction 
between the 3d5 electrons and spins in the s-like conduction band and p-like valence 
band of Cdl -,Mn,Te gives rise to anomalously large Zeeman splittings of band-edge 
extrema; this results in unusual magneto-optical effects such as giant band-edge Faraday 
rotation (Gaj eta1 1978). 

Optical experiments have provided the most convincing evidence for BMP in DMS. 
The most direct evidence has been provided by spin-flip Raman scattering (Ramdas and 
Rodriguez 1988), but this has only been observed for donor BMP where magnetic polaron 
effects are relatively weak; the acceptor BMP where the more localised charge is expected 
to give greater magnetic binding energy has so far proved elusive. The spin-flip line is 
readily identified by its magnetic field dependence (figure 5 ) .  For Cdl -,Mn,Se (x = 0.1) 
the large initial value of the slope and saturation value of the spin splitting imply an 
effective g-value of 100 or more. Figure 5 also shows that there is a finite spin-flip 
energy for B = 0 that is not strongly temperature-dependent, indicating a finite resultant 
magnetic field at the donor site. Even though, on average, when B = 0 the Mn2+ 
magnetisation within the donor orbit vanishes, the donor spin can relax sufficiently 
rapidly to align with fluctuating Mn2+ magnetisation to produce the net spin-spin cor- 
relation responsible for the zero-field splitting (see Wolff 1988 for a useful review). In 
general, temperature-independent energy shifts are characteristic of the fluctuation 
regime. 

The model Hamiltonian for a donor BMP in a DMS is 
e' 

2m* 4 n ~ ~ ~ r  j 
H=---- PL a 1c, (s * Sj)6(' - R j )  

where m* is the effective mass, E is the dielectric constant and a i s  the exchange constant 
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Figure 5. Spin-flip energy in C4 9Mno ,Se 
as a function of temperature and magnetic 
field; the full curves are theoretical pre- 
dictions (after Heiman eta1 1983). 
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for the conduction band. Note the change in notation from 0 2, where a was used to 
denote the Frohlich coupling constant between the carrier and the LO phonons. Usually 
the small anisotropy (about 5 % )  of m* and E is ignored. However, the neglect of Mn2+- 
Mn2+ interactions in equation (25) can cause problems. With x = 0.05 one finds Curie- 
like behaviour with an effective x, called X, of about 0.03 due to the presence of 
antiferromagnetically coupled Mn2+ pairs, which are non-magnetic. Forx S 0.1 one can 
use equation (25) with reasonsable confidence by replacingx by 2. However, for x 3 0.1 
the X approximation becomes increasingly unsatisfactory. 

One can write the spin term in equation (25) in the form -Xj K,(s S,) and the 
parameter WO’ cc K 2  is determined from fits to data of the type shown in figure 5 (see 
Wolff 1988), giving WO = 0.56 meV for Cdo 9Mno,lSe. In general, the internal energy 
U of the BMP has two distinct temperature regimes, for pWo < 1 and @WO B 1. As 
temperature is reduced the carrier spin, which relaxes rapidly compared to the Mn2+ 
spins, gradually aligns with instantaneous Mn2+ fluctuations, causing a decrease of U ;  
this is the fluctuation regime. When alignment of the carrier is nearly complete (p  WO = 2) 
the system can further reduce U by forcing Mn2+ spins to adopt energetically favourable 
configurations, leading at low T to spin saturation ((s S,) + 5/4). When pWo < 1 
(fluctuation regime) each BMP can have moment fluctuations in time over a wide range 
of values and this is reflected in the linewidth observed in spin-flip Raman scattering. 
When pW0 9 1 (collective regime) the BMP has a well defined moment described by a 
classical Langevin formula. At  T < 2 K, pWo = 4 so that for T > 2 Kfluctuationscontrol 
behaviour whereas for T < 2 K the system is beginning to enter the collective regime. 

In a typical wide-gap DMS WO = 6 meV for an acceptor, an order of magnitude greater 
than for a donor, and the transition from the fluctuation to the collective regime is 
expected to occur at around 30 K. Although acceptor BMP have proved elusive, donor- 
acceptor pair recombination provides a means of studying acceptors; the donors and 
acceptors are well separated and the observed magnetic polaron effects can be assigned 
largely to the acceptor (Nhung and Plane1 1983). A similar situation occurs for exciton 
luminescence in DMS (see e.g. Wong et a1 1989). Very large magnetic-field-induced shifts 
of luminescence are observed and there is a magnetic contribution to the binding energy 
when B = 0. This is largely due to the more localised acceptor but there are difficulties 
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of interpretation because of the simultaneous presence of localisation induced by ionic 
disorder. 

Emin and Hillery (1988) have considered the formation of magnetic polarons and 
magnetic bipolarons in an antiferromagnet and have concluded that the conditions 
necessary for magnetic bipolaron formation are hard to fulfill (see also 0 2.4). 

4. Polarons and the Jahn-Teller effect 

If electron-lattice coupling is introduced into a system where otherwise the electronic 
ground state would be orbitally degenerate then the Jahn-Teller theorem (Jahn and 
Teller 1937) states that there always exists a distortion of the lattice that lowers the total 
energy while lowering the symmetry and removing the orbital degeneracy. The only 
exception to this rule is a linear system, which is stable against bending; note also that 
the Kramers degeneracy of a system containing an odd number of electrons, which arises 
because of spin effects, is not removed by the distortion. 

This has the consequence that the Born-Oppenheimer approximation breaks down. 
The electron and lattice motions cannot be separated, since which distortion of the 
lattice is the energetically favourable one depends on which of the manifold of orbitally 
degenerate states the electron occupies. The energy gained by the system as a result of 
the distortion is known as the Jahn-Teller energy EJT; it is analogous to the relaxation 
energy E ,  in the electron-phonon coupling of non-orbitally degenerate states that was 
discussed in 9 2. 

The Jahn-Teller effect is best understood in molecular systems and in defects in 
solids (Englman 1972, Stoneham 1985). In the case of a defect, the discussion is usually 
simplified by assuming that the degenerate electronic system, often a rare-earth or 
transition-metal ion, couples to a single local mode of the lattice only. This enables 
qualitative solutions for the coupled electronic and vibrational (so-called uibronic) states 
to be found relatively easily (Sturge 1967). We note in passing that, while many of the 
best-known examples involve cation impurities, Jahn-Teller effects are also observed 
at anion impurities or intrinsic defects (Hayes and Stoneham 1985). 

More complicated, however, is the question of the cooperatiue Jahn-Teller effect 
(Elliott et a1 1972, Gehring and Gehring 1975). Here one considers a whole array of 
structural units, each of which would be in isolation an orbitally degenerate system such 
as a transition-metal ion of the type discussed above plus its surroundings, but arranged 
so that a distortion in one system exerts a force on its neighbours. Such an array 
typically shows a phase transition from a high-temperature disordered phase where the 
macroscopically averaged expectation value of the distortion at some wavevector is zero 
to a low-temperature ordered phase where it is not. It is usual to consider such a transition 
by analogy with the spin systems whose statistical mechanics has been extensively 
studied; if neighbouring Jahn-Teller systems are coupled so that it is energetically 
favourable for them to distort in the same orientation then the analogy is with a ferro- 
magnetic spin system, whereas if neighbouring units tend to distort in opposite directions 
the assembly behaves like an antiferromagnetic spin system. 

Now we consider the effects of charge transport in such a system. In general, if one 
of the structural units is orbitally degenerate when occupied by n electrons, it will not 
also be orbitally degenerate when occupied by n + 1 or n - 1 electrons. For example, 
Cu2+ is a Jahn-Teller ion but Cu' and Cu3+ are not. Thus any full theory of charge 
transport in a Jahn-Teller system must include the interactions of Jahn-Teller ions with 
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Figure 6. Schematic illustration of the mobility 
of a Jahn-Teller polaron or soliton due to the 
translational symmetry of the lattice. 

Figure 7. Structure of trans-polyacetylene (r-PA). 

non-Jahn-Teller ions, and there does not seem to be any comprehensive theoretical 
treatment of this problem. When considering the limits of a lightly doped insulator or 
semiconductor, whether n-type or p-type, there are two distinct cases to consider. 
First, the material may consist in the undoped state of Jahn-Teller ions, whose orbital 
degeneracy will be removed by doping. Secondly, the undoped material may contain no 
Jahn-Teller units and these may be created by the doping. This second case has been 
given some theoretical attention. Hock et a1 (1983) have performed a variational treat- 
ment at zero temperature of a single carrier in a narrow band with an Einstein oscillator 
model for the phonon spectrum. They refer to the resulting quasi-particle containing a 
carrier plus its associated asymmetric lattice distortion as a Juhn-Teller polaron. The 
results are similar to those from treatments of the conventional polaron; as the Jahn- 
Teller relaxation energy EJT is increased, the width of the resulting polaron band is 
reduced. 

The Jahn-Teller polaron may be considered as an excitation of the (non-linear) field 
theory representing the coupled electron-phonon system, quite distinct from the linear 
excitations of the non-interacting system (the Bloch electrons and phonons). This type 
of excitation is often referred to as a soliton (see § 1). This usage is similar to that adopted 
in our discussion of conducting polymers in § 5 ;  note that, just as in frans-polyacetylene, 
the Jahn-Teller polaron may be regarded as an excitation of a state with an underlying 
degeneracy. We illustrate this, for the case where the presence of a carrier produces a 
single Jahn-Teller ion, in figure 6. The mobility of the soliton at low temperatures arises 
from the property already discussed in § 2.2; since the coupled electron-lattice system 
still possesses translational invariance, the ground state of the system is a coherent 
superposition of the soliton on all possible sites. 

The Jahn-Teller relaxation energies associated with the Cu2+ ion, configuration 
3d9 2D, in octahedral environments are exceptionally large, of the order of 0.1-0.3 eV. 
Some of the novel polaron theories of superconductivity invoke this to explain the high 
transition temperatures of the new copper oxide superconductors (de Jongh 1988a, b, 
Stoneham 1987). The large Jahn-Teller energies are supposed to result in large forces 
between polarons, which then bind strongly to form the bipolarons that condense to 
form a superfluid state. 

5. Defects in conjugated polymers 

Most conjugated polymers behave as strongly anisotropic (i.e. approximately one- 
dimensional) semiconductors, with band gaps typically in the range 1.4-3.0 eV. Whereas 
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in traditional (three-dimensional) semiconductors, the charge carriers are free electrons 
and holes, with energies close to the band edges, conduction in conjugated polymers is 
believed to be mediated by charged defects, which are the species formed on doping 
(the electron-lattice coupling is sufficient to create localised, polaronic states). At low 
dopant levels, conductivity appears to be largely due to the mobility of these defects 
themselves along a chain; at higher concentrations, various more complicated mech- 
anisms, involving hopping between chains or between defects as the conductivity- 
limiting process, have been proposed (and reviewed by Kivelson 1986). The possibility 
of applications has fuelled the study of the these defect states; for example, the doping 
process in a number of polymers can be caried out electrochemically and reversibly 
(Chung et a1 1984, and numerous others), leading to applications both as electrodes in 
lightweight rechargeable batteries (Shacklette et al1989) and in semiconductor devices 
(Burroughes et a1 1989). The conductivities attainable by doping can be as high as that 
of copper (Basescu et a1 1987), and the consequent conductivity: mass ratio (which is 
an important quantity when considering applications in the aerospace industries) is 
substantially higher than that of any metal. 

In the past, much of the investigation into the properties of conjugated polymers has 
been carried out within the framework of the model Hamiltonian of Su, Schrieffer and 
Heeger (SSH) (Su et all980) and its continuum approximation due to Takayama, Lin- 
Liu and Maki (TLM) (Takayama et a1 1980). An extensive review of this work has been 
given by Heeger et al(1988). The SSH Hamiltonian is based on extended Huckel theory, 
and will be outlined below; the TLM version is often used, as it lends itself to analytic 
solutions in some simple cases. Other authors, such as Stafstrom and Bredas (1988), 
have used methods based on semi-empirical Hartree-Fock theory, which have been 
standard tools of quantum chemistry for many years (see, for example, Pople and 
Beveridge 1970). In our self-consistent studies of the electronic behaviour and of the 
distortion of the molecular geometry of these systems (Wallace 1989a, b) we have carried 
out self-consistent numerical calculations using both the SSH Hamiltonian and the CNDO 
(complete neglect of differential overlap) and INDO (intermediate neglect of differential 
overlap) parametrisations of Hartree-Fock theory; the work of Stafstrom and Bredas 
was performed within the MNDO (modified neglect of differential overlap) para- 
metrisation, which retains some of the two-centre integrals neglected by CNDO and INDO, 
but is consequently rather more difficult to parametrise. Sadlej (1985) has outlined, and 
to some extent compared, all three methods. 

5.1. trans-Polyacetylene and the SSH Hamiltonian 

The archetypal example of a conjugated polymer is trans-polyacetylene (t-PA), whose 
structure is shown in figure 7 .  The carbon atoms are sp2 hybridised, with one pz (JC) 

electron per carbon atom not being included in the a-bond backbone (taking the plane 
of the polymer to be the xy plane). In simple Huckel theory, these JC electrons would be 
expected to form a half-filled band of width 4t0, where to is the hopping integral 
(nlHln + 1) between adjacent carbon atoms, giving a one-dimensional metal. However, 
a Peierls distortion of the t-PA chain occurs, doubling the size of the unit cell and 
introducing a band gap in the middle of the band (for a more extensive discussion of the 
bonding in t-PA and of the nature of the Peierls distortion in one-dimensional metals, 
see e.g. Hayes (1985)). This was first proposed for &PA by Longuet-Higgins and Salem 
(1959); in chemical terms, the backbone consists of alternating single and double bonds 
(although the bonds are actually rather more similar in terms of length and of bond order 
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Figure 8. Total energy E of t-PA against dimerisation U". 1 

than is implied by this representation, it does form a useful basis from which to discuss 
the behaviour of the system). 

The SSH Hamiltonian sought to quantify this dimerisation, and to provide a frame- 
work for the study of states other than the uncharged ground state. It assumed that the 
only electrons of interest were the n-electrons, i.e. that the (7 (bonding) and U* (anti- 
bonding) bands would lie respectively well below and above the 7~ bands, and that the 
only atomic displacement of interest was along the chain direction (this displacement, 
for the nth atom, was labelled U,). Only nearest-neighbour interactions were considered, 
but the hopping integral was expanded linearly, as a function of inter-atomic separation, 
about to. The distortion of the CJ bonds was given a simple quadratic form and the 
Hamiltonian thus became 

H = - x x [to - 4% - U, + I > l ( C L C , + l . s  + C,++l .SC,)  + 1 K X  ( % + 1  - U , ) 2  
I1 s n 

(26) 

where c& (c,,) is the creation (annihilation) operator for a pz orbital at site n and with 
spin s. The parameters to, a and K were derived from experimental results. 

A uniformly dimerised chain corresponds to a displacement pattern U, = (-l)"uo, 
where U,, is constant, and the one-electron energies (the eigenvalues of the Hamiltonian 
matrix) are now given by 

E ;  = [2to cos(ka)J2 + [4auo sin(ka)]'. (27) 

The total energy of the system (replacing the sum of electronic energies by a suitable 
integral) is given by 

E,,, = -(4Nto/n)E(l - 2') -t NKt;Z2/2a2 (28) 

where z is the dimensionless quantity 2auo/to and E(l  - z 2 )  is an elliptic integral. For 
small z 2  ( z  is a directly observed quantity, the ratio of band gap to band width, and is 
approximately 0.14), the elliptic integral can be approximated by 

E(l - z 2 )  = 1 + I(ln 4/(z( -h)z2 (29) 

which has a component linear in z ,  so the minimum energy state will have non-zero uo 
(since z is known, a can be fitted so that the minimum energy does indeed occur at this 
value). A graph of total energy against U,, is shown in figure 8. Note that there are two 
equal minima, corresponding to positive and negative U,,; the two degenerate states are 
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State A 
Figure 9. Degenerate states of t-PA. 

State 8 

Figure 10. Topological representation of a soliton in I-PA. The defect consists of a change in 
the backbone of the chain from state A to state B, with one localised electronic state 
associated with an unpaired electron at the point where this change occurs. In reality, both 
the change of state and the localised electronic state are spread out over a longer distance 
than implied by this representaion. 

labelled A and B in figure 9 and are clearly related by symmetry. The values chosen by 
SSH for the empirically fixed parameters to,  a and K gave u0 = 0.04 A, although we use 
values that give u0 = 0.03 A, in better agreement with experimental evidence (Yannoni 
and Clarke 1983). 

5.2. Solitons and the dimerisation parameter 

In order properly to study the distortion around a defect, it is helpful to define some 
parameter that varies smoothly along a polymer chain. SSH used the staggered dis- 
placement U ,  = (-l)%,, but this is not always a smoothly varying quantity, since the 
equilibrium bond length around a charged defect is altered from its uncharged value, 
and this will lead to rapid apparent fluctuations in U,. Instead, we define a dimerisation 
parameter d,  by 

dn = ( - 1 l n ( b n , n + 1  - b n - l , n )  (30) 
where b,,,+ is the length of the bond joining atoms n and n + 1. In the ground state the 
bond lengths will, like U,, alternate along the chain, and d, will be equal to 4u0 (which 
is positive in state A and negative in state B). In a real chain, without periodic boundary 
conditions, the degree of dimerisation actually increases slightly towards the ends, but 
this effect is neglected for the purposes of this discussion. 

Now we can consider the basic defect in t-PA. Imagine that we constrain one end of 
a polymer chain to be in state A and the other to remain in state B (how this may be 
done is outlined below). The simplest model of the intervening (defect) region is that of 
figure 10, where the transition from state A to state B is abrupt, and there is an unpaired 
electron (free radical) completely localised on the central carbon atom. In fact, the 
change in dimerisation parameter is more extended; in the TLM approximation, the 
dimerisation parameter is proportional to tanh(x/l), where the half-width 1 is approxi- 
mately seven C-C spacings, and the wavefunction associated with the defect extends over 
a similar range. Conditions of bonding (from the chemical viewpoint) or orthogonality 
between the wavefunctions (in the quantum-mechanical framework) dictate that there 
remain one localised state, and within the Huckel approximation this state has energy 
at mid-gap (the mid-gap state may be regarded as a local suppression of the Peierls 
distortion). This type of defect, whose existence was originally proposed by Longuet- 
Higgins and Salem (1959) and which was first considered in a quantitative manner (albeit 
in a very simple form) by Pople and Walmsley (1962), is known as a soliton (originally 
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kink soliton or bond-alternation defect), in view of its obvious non-linearity and of the 
similarity of the TLM continuum model to more familiar equations of field theory, which 
display more traditional solitonic solutions. In addition, its large size means that it can 
move freely along a chain without changing its shape, another important soliton property 
(the effective mass of a soliton was estimated by SSH to be approximately six times the 
free-electron mass). Its spin-charge relations are slightly unusual. In the neutral chain 
it is associated with an unpaired electron and thus has spin S = i; this electron can be 
removed, or another electron added, to give defects with spin S = 0 and charge +e. 

The reason why these spin-charge relations do not violate Kramers’ theorem, and 
the means by which we were able to enforce the change from state A to state B above, 
are closely allied. If we start with a defect-free chain, with an even number of carbon 
atoms, each end of the chain is terminated by a double bond. Now if we attempt to create 
just one soliton, one end of the chain is forced to end with a single bond, thereby leading 
to a second unpaired electron on a final carbon atom (just as in the discussion of the 
soliton, this electron will not be associated entirely with this one carbon atom, but its 
wavefunction will extend into the chain over a few carbon atoms, and the distortion will 
rather resemble that of half a soliton). We cannot create just one localised state on an 
even chain: we must create them in pairs. In practice, the localised state we created at 
the end of the chain will move into the chain’s interior, in order to maximise the reduction 
in a-bond energy associated with the change in dimerisation amplitude around the 
defect, and will become another soliton (this was first predicted by Su and Schrieffer 
(1980), and has been verified dynamically within the CNDO framework (Wallace 
1989a,b)). The dynamics of this process are in accordance with the property of a soliton 
(in mathematical terms) that any distortion injected at one end of an infinite non-linear 
system will resolve itself into a number of solitons by the time it reaches the other end. 
If instead of a chain with an even number of carbon atoms we consider a chain with an 
odd number of carbon atoms, and no defects, the bonding pattern dictates that it is 
forced to end with a single bond; this state is unstable, and the localised electronic state 
associated with this single bond will move up the chain as a soliton. Thus one end of the 
chain will be state A and the other state B; the total number of pz electrons in the chain 
is odd (and all the other electrons are paired), so a single localised solitonic state is a 
necessary property of the ground state. 

5.3. General (non-degenerate) polymers 

trans-Polyacetylene is, however, not a typical conjugated polymer: the degeneracy 
between states A and B makes it a very special case (although a few other polymers that 
display this same degeneracy can be found, they have much larger repeat units and the 
concept of an extended defect becomes somewhat tenuous). Other polymers, such as 
cis-polyacetylene (c-PA) and polypyrrole (PPY) are more typical; in figure 11 they are 
drawn in their stable forms, the cis-transoid and trans-cisoid isomers respectively (if we 
were to define a parameter U,, to represent the amplitude of the Peierls distortion as for 
t-PA above, then one of these polymers would have a ground state corresponding to 
positive uo and the other to negative uo; graphs of total energy against uo, analogous to 
figure 8, are shown in figure 12). The reasons why these particular isomers are stable is 
not difficult to see: in C-PA, steric repulsion between neighbouring hydrogens is reduced 
in the cis-transoid isomer, while in PPY it is the fact that the C-N bond length necessary 
to complete the heterocycle is smaller in the trans-cisoid isomer than in the cis-transoid 
isomer that leads to the stability of the former. It is immediately clear, therefore, that 
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Figure 11. Ground states of (a) cis-polyacetylene (c-PA) and (b) polypyrrole (PPY) 

Figure 12. Total energy against dimerisation for non-degenerate polymers (see text). -- 
Figure 13. Topological representations of a polaron in C-PA. In contrast to the case of a 
soliton, the amplitude of the defect is free to vary instead of being fixed by the boundary 
conditions, and this is illustrated here. The right-hand diagram shows how a polaron may, 
in one limit, be considered as a bound soliton pair, as the chain changes from cis-transoid to 
trans-cisoid and back again. There are two localised electronic states; the defect will be 
stable if at least one is unoccupied or doubly occupied. 

solitons cannot exist in C-PA or PPY, since their existence implies extended regions of 
both A and B states. The only simple defect type that can occur in these polymers is 
represented by a reduction in the dimerisation parameter over a limited region of the 
chain. It is not so easy to represent in chemical bonding terms as the soliton, especially 
as the actual amount by which the chain is distorted is variable and not dictated by 
topology, but two versions, on a schematic carbon backbone, are shown in figure 13. 
The first represents a minimum dimerisation of zero whereas the second has a negative 
dimerisation in the centre of the defect. This form of defect is associated with a pair of 
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localised states, which are (within the SSH model) symmetrically located about mid-gap, 
at energies ?E,  relative to mid-gap (figure 14) (the value of E,  depends on the geometry 
of the defect: a very shallow distortion of the lattice will only move the states out of their 
respective bands by a small amount, while at the opposite extreme the defect will split 
into a pair of solitons and the two states will meet at mid-gap). Clearly, this type of defect 
will not be stable in an uncharged, unexcited singlet state, as it will decay trivially into 
the ground state, but addition of a single charge to the defect will leave no such decay 
route available and will stabilise the defect. Again, the defect as it actually occurs will 
be substantially more extended than shown in figure 13. Its form is entirely analogous 
to that of a polaron in more familiar materials such as the 111-V semiconductors or the 
alkali halides (§ 2), in that it consists of a localised charge coupled to the longitudinal 
optic modes (i.e. the dimerisation) of the host. Sometimes, this class of defect in 
conjugated polymers is known as a polaron soliton, but there seems no reason for 
qualifying the description and it is now more generally known as a polaron. The charge : - 
spin relationship of such polarons is traditional; they carry both charge and spin. 

Since the defect of figure 13 has two unpaired electrons, we are free to remove them 
both, leading to a doubly charged state of spin zero. If this is stable with respect to decay 
into two polarons, we have a negatiue-Ueffect (see also 0 2.3), and the resulting defect 
is known as a bipolaron (in the case of t-PA, stability with respect to two-soliton decay 
also needs to be considered, but it should be understood that the negative-U effect as 
such is used specifically to account for stability with respect to two-polaron decay, and 
that two-soliton decay is an entirely separate process). The localised electronic states in 
a bipolaron are, like those of a polaron, symmetrically spaced about mid-gap, and the 
energy level diagram of figure 14 applies equally to polarons and bipolarons. 

5.4. Quantitative study of defect formation 

We can now start to investigate quantitatively the energies of each of the defects we 
have been considering. The SSH model provides an easily comprehensible framework 
and will be used in the first instance, but our results from CNDO will be introduced on 
occasions as they include effects that are neglected by SSH. The SSH model, as originally 
proposed, does not consider electron-electron interaction in any form, for example, 
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and the more commonly used empirical corrections to the model fail to do so in any 
reliable manner, so results where electron-electron interaction is likely to be important, 
and in particular the question of the negative-U effect, are best handled by CNDO. 

Consider t-PA first, and assume that we are dealing with a chain of even length (to 
make the boundary conditions as simple as possible). The band gap induced by the 
Peierls distortion is approximately 1.4 eV, and so (taking the centre of the gap, i.e. the 
localised p,-orbital energy, as the zero of energy) the purely electronic energy required 
to create a soliton is 0.7 eV, since one electron must be raised from the valence band 
edge to mid-gap. The dimerisation amplitude is reduced around a soliton, though, and 
there is a gain of approximately 0.25 eV from this source, so the total cost of creating a 
soliton (more precisely, half the cost of creating a soliton pair) is about 0.45 eV (the 
exact analytic result from calculations within the TLM model is Eg/n, where Eg is the 
band gap). If we include electron-electron interaction in the simplest manner possible, 
i.e. via an on-site Hubbard U ,  with an extra term in the Hamiltonian given by 

He-e = m(c;+ U,+ - t )  (c,+_c,- - 4) (31) 
where the second suffix refers to the electron spin as before, we increase the energy of 
a charged soliton by about 0.11 eV, a value derived indirectly from the results of photo- 
induced absorption on &PA. It can be shown (Kivelson and Heim 1982, Wallace 1989a) 
that this increase in energy is fUeff, where 

U,, = /asffliI4 (32) 
and a:” is the coefficient of the nth p, orbital in the soliton wavefunction, and that the 
photo-induced absorption peak corresponding to absorption from charged solitons is 
shifted from mid-gap by tueff. This peak is observed at 0.48 eV (Blanchet et a1 1983), 
implying U,,, = 0.44 eV. The energy of an uncharged soliton is decreased by We,. 

In the case of polaron formation (see 8 5.3), the gain in energy due to the localised 
reduction in dimerisation amplitude is strongly dependent on the depth of the distortion, 
as is the loss of energy due to the creation of the localised electronic states; this is why 
self-consistent calculations are necessary to study defects in conjugated polymers with 
any accuracy. Analytic solution of the TLM model yields a value of Eg /2d2  for E, (see 
D 5.3) (Fesser et a1 1983), while numerical self-consistent solution of the SSH model gives 
states slightly closer to the centre of the band gap, with E, = k0.48 eV. The consequent 
lattice distortion is fairly slight, but extends over a slightly larger region than that of a 
soliton, and leads to a gain in energy of E,,,,, = 0.29 eV. The energy required to form a 
hole polaron is 

E p o l =  Eg/2 + - E,) - Erelax (33) 
where E,/2 = 0.7 eV is the energy required to remove an electron from the top of the 
valence band and (E,/2 - E,) = 0.22 eV is the energy required to raise the now unpaired 
electron from the top of the valence band to the localised state at -E,. Hence E,,, = 
0.63 eV, which represents a saving of 0.07 eV over the simple removal of an electron 
from the valence band without lattice distortion. The equivalent calculation for an 
electron polaron is slightly different, but yields the same energy E,,,. CNDO predicts a 
slightly greater lattice distortion than SSH, but the results are qualitatively similar. 
Inclusion of a Hubbard U into the SSH model has no effect on the polaron energy. 

The calculated energies required to form charged solitons and charged polarons in 
t-PA suggest that solitons will be formed preferentially. Polarons will still be formed, of 
course, where boundary conditions prohibit soliton formation (e.g. on adding a single 
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charge to a chain of even length), since the calculated energy required to create a pair 
of solitons, one charged and one uncharged (which is the only way to store a single 
charge between solitons within these boundary conditions) is 0.9 eV. 

We now consider the polaron creation energy associated with a single charge on the 
chain of a polymer other than C-PA. Modifying the SSH model to represent t-PA gives 

E, = 0.77 ev E ,  = 1.94eV Erelax = 0.28 eV 

and hence (see equation (33)) Epol = 0.89 eV, a saving of 0.8 eV on the direct removal 
of an electron from the valence band. Again, CNDO predicts a slightly greater lattice 
distortion, presumably because it takes into account the repulsion of the now positively 
charged carbon atoms and aims to spread the defect out further as a result. 

The situation becomes more interesting when a second charge is added to the 
polaron, as bipolar formation becomes possible. Again, we deal with t-PA first. Self- 
consistent calculations within both the SSH and CNDO models agree that the charged 
bipolaron in t-PA is unstable with respect to decay into two solitons; we cannot calculate 
the energy of a bipolaron as such, since the geometry relaxation routines will simply lead 
to this decay (the energy required to add the second charge is, in the SSH model, rather 
less than that required to add the first, since the first charge will form a polaron, of energy 
0.63 eV, and the second will convert this into a soliton pair, of energy 1.12 eV). 

Now consider the possibility of bipolaron formation in C-PA, where this route for 
instability is forbidden. Within SSH, the energy saving due to the o-bond distortion is 
0.43 eV, and the new states are at k0.45 eV. As expected, they are closer to the band 
centre than the states due to the single polaron, as the lattice distortion is greater, but 
in fact the energy required to form a bipolaron is independent of the energies of these 
states, since they will either be empty, in the case of a hole bipolaron, or completely 
full, for an electron bipolaron. Thus the total energy required to form a bipolaron is 
( E g  - E,,,,,) = 1.51 eV, a saving of 0.27 eV on the formation of a pair of polarons. 

It is not surprising that bipolarons are predicted to be stable in the SSH model, since 
electron-electron interaction is not considered and the main term acting to destabilise 
the bipolaron is therefore ignored. Adding a Hubbard U term again gives a Coulomb 
energy of about 0.25 eV for the bipolaron, a figure, like its equivalent in t-PA, derived 
indirectly from the results of photo-induced absorption, in this case on polythiophene 
by Vardeny et a1 (1986). However, the uncertainty in this figure is substantial and the 
evidence for the stability, or otherwise, of bipolarons in the SSH model should not be 
regarded as conclusive. 

The results of CNDO calculations on C-PA should be more reliable, however, since 
electron-electron interaction is considered in a self-consistent manner. Relative to the 
energies required to remove electrons from a chain at fixed molecular geometry, we find 
that the energy required to create a polaron in a chain of length 32 (i.e. a molecule of 
C32H34) is -0.60 eV and that the corresponding bipolaron energyis -3.11 eV, substanti- 
ally more stable than a polaron pair. This result is in good agreement with the exper- 
imental evidence that bipolarons are the species formed on doping at moderate to high 
concentrations (this evidence will be discussed in § 5.5) .  At lower concentrations, 
polarons should still be observed under normal conditions, owing to the significant 
barrier to polaron recombination (the Coulomb repulsion of a polaron pair is a much 
longer-range effect than their mutual attraction due to the lattice distortion); a graph 
representing how the energy of a polaron pair depends on the separation of the polarons 
is shown in figure 15. Crude numerical estimates of the barrier height (modelling the 
polaron charge density by a Gaussian distribution, and the Coulomb integral by a term 



Polarons and solitons 5591 

proportional to 1/(R2 + a2)1/2,  with a about two lattice spacings) lead to values of the 
order of 1 eV; the situation is complicated by the presence of the (charged) dopant ions, 
however. 

5.5. Experimental evidence concerning defect types 

Evidence for the nature of the defects formed on doping conjugated polymers has been 
obtained from electron spin resonance (ESR) measurements, relying on the different 
charge : spin relationships of the various defects discussed above. Ikehata et a1 (1980) 
measured the magnetic susceptibility of t-PA as a function of dopant level, up to 13.8% 
doping (expressed as the ratio of dopant molecules to carbon atoms). They found that 
t-PA exhibited a small Curie susceptibility in the undoped state (about 4 X spins per 
carbon atom), which they attributed to the presence of a small number of neutral solitons 
(presumably imposed by the boundary conditions, since the energy required to create 
a soliton pair is sufficiently large that thermally created solitons should not exist in 
appreciable quantities). On doping, the spin concentration decreased, corresponding to 
the ionisation of these solitons (recall that charged solitons are spinless, while uncharged 
solitons do carry spin), and no Curie susceptibility is seen at dopant concentrations 
higher than about 2-3% (as charged solitons are formed directly from the ground-state 
chain). Above about 7%, a significant Pauli contribution to the susceptibility is seen, 
representing an effective semiconductor-metal transition. 

Similar experiments have been performed on PPY (Scott et a1 1983) and the sus- 
ceptibility is observed to increase initially, until at about 1 % doping it reaches amaximum 
and starts to tail off. This is consistent with the formation of polarons initially, to be 
replaced by bipolarons at higher dopant levels as the polarons combine. Chen and 
Heeger (1986) repeated these experiments on polythiophene, but at each doping level 
measured how the susceptibility varied with time. They found that, even when significant 
susceptibility (and hence appreciable polaron concentration) was initially observed, it 
would decline to a very small value after a few days, as the polarons overcame the kinetic 
barrier to recombination. How this decay in the susceptibility varied with temperature 
was not investigated. The timescale over which the decay process occurs will presumably 
depend on the precise polymer under consideration, as well as on the sample tem- 
perature, and results akin to those of Scott et a1 would be expected whenever such an 
experiment is carried out over a time-scale smaller than the characteristic polaron- 
bipolaron conversion time (which will chiefly depend on the barrier height of figure 15). 
Simple numerical models of this competitive polaron-bipolaron formation are easy to 
write, and yield results in good qualitative agreement with the experimental data. 
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